(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))
S is empty.
Rewrite Strategy: FULL
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
m/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
f,
proper,
topThey will be analysed ascendingly in the following order:
f < active
active < top
f < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
f(
b,
c,
x)) →
mark(
f(
x,
x,
x))
active(
f(
x,
y,
z)) →
f(
x,
y,
active(
z))
active(
d) →
mf(
x,
y,
mark(
z)) →
mark(
f(
x,
y,
z))
active(
d) →
mark(
c)
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
proper(
d) →
ok(
d)
proper(
f(
x,
y,
z)) →
f(
proper(
x),
proper(
y),
proper(
z))
f(
ok(
x),
ok(
y),
ok(
z)) →
ok(
f(
x,
y,
z))
top(
mark(
x)) →
top(
proper(
x))
top(
ok(
x)) →
top(
active(
x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))
The following defined symbols remain to be analysed:
f, active, proper, top
They will be analysed ascendingly in the following order:
f < active
active < top
f < proper
proper < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_b:c:mark:d:m:ok3_0(
a),
gen_b:c:mark:d:m:ok3_0(
b),
gen_b:c:mark:d:m:ok3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, 0)))
Induction Step:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, +(n5_0, 1)))) →RΩ(1)
mark(f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
f(
b,
c,
x)) →
mark(
f(
x,
x,
x))
active(
f(
x,
y,
z)) →
f(
x,
y,
active(
z))
active(
d) →
mf(
x,
y,
mark(
z)) →
mark(
f(
x,
y,
z))
active(
d) →
mark(
c)
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
proper(
d) →
ok(
d)
proper(
f(
x,
y,
z)) →
f(
proper(
x),
proper(
y),
proper(
z))
f(
ok(
x),
ok(
y),
ok(
z)) →
ok(
f(
x,
y,
z))
top(
mark(
x)) →
top(
proper(
x))
top(
ok(
x)) →
top(
active(
x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(13) Obligation:
TRS:
Rules:
active(
f(
b,
c,
x)) →
mark(
f(
x,
x,
x))
active(
f(
x,
y,
z)) →
f(
x,
y,
active(
z))
active(
d) →
mf(
x,
y,
mark(
z)) →
mark(
f(
x,
y,
z))
active(
d) →
mark(
c)
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
proper(
d) →
ok(
d)
proper(
f(
x,
y,
z)) →
f(
proper(
x),
proper(
y),
proper(
z))
f(
ok(
x),
ok(
y),
ok(
z)) →
ok(
f(
x,
y,
z))
top(
mark(
x)) →
top(
proper(
x))
top(
ok(
x)) →
top(
active(
x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(15) Obligation:
TRS:
Rules:
active(
f(
b,
c,
x)) →
mark(
f(
x,
x,
x))
active(
f(
x,
y,
z)) →
f(
x,
y,
active(
z))
active(
d) →
mf(
x,
y,
mark(
z)) →
mark(
f(
x,
y,
z))
active(
d) →
mark(
c)
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
proper(
d) →
ok(
d)
proper(
f(
x,
y,
z)) →
f(
proper(
x),
proper(
y),
proper(
z))
f(
ok(
x),
ok(
y),
ok(
z)) →
ok(
f(
x,
y,
z))
top(
mark(
x)) →
top(
proper(
x))
top(
ok(
x)) →
top(
active(
x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))
The following defined symbols remain to be analysed:
top
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(17) Obligation:
TRS:
Rules:
active(
f(
b,
c,
x)) →
mark(
f(
x,
x,
x))
active(
f(
x,
y,
z)) →
f(
x,
y,
active(
z))
active(
d) →
mf(
x,
y,
mark(
z)) →
mark(
f(
x,
y,
z))
active(
d) →
mark(
c)
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
proper(
d) →
ok(
d)
proper(
f(
x,
y,
z)) →
f(
proper(
x),
proper(
y),
proper(
z))
f(
ok(
x),
ok(
y),
ok(
z)) →
ok(
f(
x,
y,
z))
top(
mark(
x)) →
top(
proper(
x))
top(
ok(
x)) →
top(
active(
x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
active(
f(
b,
c,
x)) →
mark(
f(
x,
x,
x))
active(
f(
x,
y,
z)) →
f(
x,
y,
active(
z))
active(
d) →
mf(
x,
y,
mark(
z)) →
mark(
f(
x,
y,
z))
active(
d) →
mark(
c)
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
proper(
d) →
ok(
d)
proper(
f(
x,
y,
z)) →
f(
proper(
x),
proper(
y),
proper(
z))
f(
ok(
x),
ok(
y),
ok(
z)) →
ok(
f(
x,
y,
z))
top(
mark(
x)) →
top(
proper(
x))
top(
ok(
x)) →
top(
active(
x))
Types:
active :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
f :: b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok → b:c:mark:d:m:ok
b :: b:c:mark:d:m:ok
c :: b:c:mark:d:m:ok
mark :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
d :: b:c:mark:d:m:ok
m :: b:c:mark:d:m:ok
proper :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
ok :: b:c:mark:d:m:ok → b:c:mark:d:m:ok
top :: b:c:mark:d:m:ok → top
hole_b:c:mark:d:m:ok1_0 :: b:c:mark:d:m:ok
hole_top2_0 :: top
gen_b:c:mark:d:m:ok3_0 :: Nat → b:c:mark:d:m:ok
Lemmas:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:d:m:ok3_0(0) ⇔ b
gen_b:c:mark:d:m:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:d:m:ok3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b:c:mark:d:m:ok3_0(a), gen_b:c:mark:d:m:ok3_0(b), gen_b:c:mark:d:m:ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(22) BOUNDS(n^1, INF)